About Me

My photo
I am so clever that sometimes I don't understand a single word of what I am saying.

Thursday, May 3, 2012

Nanomedicine
The field of "Nanomedicine" is the science and technology of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using nanoscale structured materials, biotechnology, and genetic engineering, and eventually complex machine systems and nonorobots. It was perceived as embracing five main subdisciplines that in many ways are overlapping by common technical issues

Nanodiagnostics
It is the use of nanodevices for the early disease identification or predisposition at cellular and molecular level. In in-vitro diagnostics, nanomedicine could increase the efficiency and reliability of the diagnostics using human fluids or tissues samples by using selective nanodevices, to make multiple analyses at subcellular scale, etc. In in vivo diagnostics, nanomedicine could develop devices able to work inside the human body in order to identify the early presence of a disease, to identify and quantify toxic molecules, tumor cells.

Regenerative medicine
It is an emerging multidisciplinary field to look for the reparation, improvement, and maintenance of cells, tissues, and organs by applying cell therapy and tissue engineering methods. With the help of nanotechnology it is possible to interact with cell components, to manipulate the cell proliferation and differentiation, and the production and organization of extracellular matrices.

Present day nanomedicine exploits carefully structured nanoparticles such as dendrimers, carbon fullerenes (buckyballs), and nanoshells to target specific tissues and organs. These nanoparticles may serve as diagnostic and therapeutic antiviral, antitumor, or anticancer agents. Years ahead, complex nanodevices and even nanorobots will be fabricated, first of biological materials but later using more durable materials such as diamond to achieve the most powerful results.

The human body is comprised of molecules, hence the availablity of molecular nanotechnology will permit dramatic progress to address medical problems and will use molecular knowledge to maintain and improve human health at the molecular scale.

Applications in medicine
Within 10-20 years it should become possible to construct machines on the micrometer scale made up of parts on the nanometer scale. Subassemblies of such devices may include such as useful robotic components as 100 nm manipulater arms, 10 nm sorting rotors for molecule by molecule reagent purification, and smooth super hard surfaces made of automically flawless diamond.

Nanocomputers would assume the important task of activating, controlling, and deactivating such nanomechanical devices. Nanocomputers would store and execute mission plans, receive and process external signals and stimuli, communicate with other nanocomputers or external control and monitoring devices, and possess contextual knowledge to ensure safe functioning of the nanomechanical devices. Such technology has enormous medical and dental implications.

Programmable nanorobotic devices would allow physicians to perform precise interventions at the cellular and molecular level. Medical nanorobots have been proposed for genotological applicatons in pharmaceuticals research clinical diagnosis, and in dentistry, and also mechanically reversing atherosclerosis, improving respiratory capacity, enabling near-instantaneous homeostasis, supplementing immune system, rewriting or replacing DNA sequences in cells, repairing brain damage, and resolving gross cellular insults whether caused by irreversible process or by cryogenic storage of biological tissues.

Feynman offered the first known proposal for a nanorobotic surgical procedure to cure heart disease,  "A friend of mine (Albert R. Hibbs) suggests a very interesting possibility for relatively small machines. He says that, although it is a very wild idea, it would be interesting in surgery if you could swallow the surgeon. You put the mechanical surgeon inside the blood vessel and it goes into the heart and looks around. It finds out which valve is the faulty and takes a little knife and slices it out, that we can manufacture an object that maneuvers at that level, other small machines might be permanently incorporated in the body to assist some inadequately functioning organs".

Many disease causing culprits such as bacteria and viruses are nanosize. So, it only makes sense that nanotechnology would offer us ways of fighting back. The ancient greeks used silver to promote healing and prevent infection, but the treatment took backseat when antibiotics came on the scene. Nycryst pharmaceuticals (Canada) revived and improved an old cure by coating a burn and wound bandage with nanosize silver particles that are more reactive than the bulk form of metal. They penetrate into skin and work steadily. As a result, burn victims can have their dressings changed just once a week.

Genomics and protomics research is already rapidly elucidating the molecular basis of many diseases. This has brought new opportunities to develop powerful diagnostic tools able to identify genetic predisposition to diseases. In the future, point of care diagnosis will be routinely used to identify those patients requiring preventive medication to select the most appropriate medication for individual patients, and to monitor response to treatment. Nanotechnology has a vital role to play in realizing cost-effective diagnostic tools.

Chris Backous developing Lab-on-Chip to give doctor immediate results from medical tests for cancer and viruses, it gets its information by analyzing the genetic material in individual cells. Advances in gene sequencing mean this can now be done quickly and sequencing with tiny samples of body fluids or tissues such as blood, bone marrow, or tumors. The device can also detect the BK virus, a sign of trouble in patients who have had kidney transplants. Ultimately (Pilarski thinks,) chip technology will be able to detect what kind of flu a person has, or, even if they have SARS or HIV.

Nanotechnology has the potential to offer invaluable advances such as use of nanocoatings to slow the release of asthma medication in the lungs, allowing people with asthma to experience longer periods of relief from symptoms after using inhalants. Thus, what nanotechnology tries to do is essentially make drug particles in such a way, that they don't dissolve that fast, done this with.

Nanosensors developed for military use in recognizing airborne rogue agents and chemical weapons to detect drugs and other substances in exhaled breath.  Basically, you can detect many drugs in breath, but the amount you detect in breath is going to be related to the amount that you take and also to whether it partitions well between the blood and the breath. Drug abuse like marijuna (and things like), concentration of alcohol, testing of athletes for banned substances, and individual's drug treatment programs are two areas long overdue for breath detection technologies. We see this in future totally replacing urine testing.

Currently, most legal and illegal drug overdoses have no specific way to be effectively neutralized, using nanoparticles as absorbents of toxic drugs, is another area of medical nanoscience that is rapidly gaining momentum. Goal is design nanostructures that effectively bind molecular entities, which currently don't have effective treatments. We are putting nanosponges into the blood stream and they are soaking up toxic drug molecules to reduce the free amount in the blood, in turn, causes a resolution of the toxicity that was there before you put the nanosponges into the blood.

French and Italian researchers have come up with a completely new approach to render anticancer and antiviral nucleoside analoges significantly more potent. By linking the nucleoside analoges to sequalene, a biochemical precursor to the whole family of steroids, the researchers observed the self-organization of amphiphilic molecules in water. These nanoassemblies exhibited superior anticancer activity in vitro in human cancer cells.

Laurie B Gower, PhD, has been researching bone formation and structure at the nanoscale level. She is examining biomimetic methods of constructing a synthetic bone graft substitute with a nanostructured architecture that matches natural bone so that it would be accepted by the body and guide the cells toward the mending of damaged bones. Biomineralization refers to minerals that are formed biologically, which have very different properties than geological minerals or lab-formed crystals. The crystal properties found in bone are manipulated at nanoscale and are imbedded within collagen fibers to create an interpenetrating organic-inorganic composite with unique mechanical properties. She foresees numerous implications of the material in the future of osteology.

Hichan Fenniri, a chemistry professor, tried to make artificial joints act more like natural ones. Fenniri has made a nanotube coating for titanium hip or knee, is very good mimic of collagen, as a result of coating attracts and attaches more bone cells, osteoblasts, which help in bone growth quickly than uncoated hip or knee.

There is ongoing attempts to build 'medical microrobots' for in vivo medical use.  In 2002, Ishiyama et al ,  at Tohku University developed tiny magnetically driven spinning screws intended to swim along veins and carry drugs to infected tissues or even to burrow into tumors and kill them with heat. In 2005, Brad Nelson's  team reported the fabrication of a microscopic robot, small enough (approximately 200 µm) to be injected into the body through a syringe. They hope that this device or its descendants might someday be used to deliver drugs or perform minimally invasive eye surgery. Gorden's group at the University of Manitoba has also proposed magnetically controlled 'cytobots' and 'karyobots' for performing wireless intracellular and intranuclear surgery.

'Respirocytes', the first theoreotical design study of a complete medical nanorobot ever published in peer-reviewed journal described a hypothetical artificial mechanical red blood cell or 'respirocyte' made of 18 billion precisely arranged structural atoms. The respirocyte is a bloodborne spherical 1 µm diamondedoid 1000 atmosphere pressure vessel with reversible molecule selective surface pumps powered by endogenous serum glucose. This nanorobot would deliver 236 times more oxygen to body tissues per unit volume than natural red cells and would manage carbonic acidity, controlled by gas concentration sensors and an onboard nanocomputer.

Nanorobotic microbivores
Artificial phagocytes called microbivores could patrol the bloodstream, seeking out and digesting unwanted pathogens including bacteria, viruses, or fungi. Microbivores would achieve complete clearance of even the most severe septicemic infections in hours or less. The nanorobots do not increase the risk of sepsis or septic shock because the pathogens are completely digested into harmless sugars, amino acids, and the like, which are the only effluents from the nanorobot.

Surgical nanorobotics
A surgical nanorobot, programmed or guided by a human surgeon, could act as a semiautonomous on site surgeon inside the human body, when introduced into the body through vascular system or cavities. Such a device could perform various functions such as searching for pathology and then diagnosing and correcting lesions by nanomanipulation, coordinated by an onboard computer while maintaining contact with the supervising surgeon via coded ultrasound signals.

The earliest forms of cellular nanosurgery are already being explored today. For example, rapidly vibrating (100 Hz) micropipette with a <1 µm tip diameter has been used to completely cut dentrites from single neurons without damaging cell viability.  Axotomy of roundworm neurons was performed by femtosecond laser surgery, after which the axons functionally regenerated. Femtolaser acts like a pair of nanoscissors by vaporizing tissue locally while leaving adjacent tissue unharmed. Femtolaser surgery has performed the individual chromosomes.

Nanogenerators'
They could make new class of self-powered implantable medical devices, sensors, and portable electronics, by converting mechanical energy from body movement, muscle stretching, or water flow into electricity.

Nanogenerators produce electric current by bending and then releasing zinc oxide nanowires, which are both piezoelectric and semiconducting. Nanowires can be grown on polymer-based films, use of flexible polymer substrates could one day allow portable devices to be powered by movement of their users.
"Our bodies are good at converting chemical energy from glucose into the mechanical energy of our muscles," Wang (faculty at Peking University and National Center for Nanoscience and Technology of China) explained "these nanogenerators can take mechanical energy and convert it to electrical energy for powering devices inside the body. This could open up tremendous possibilities for self-powered implantable medical devices."

No comments:

Post a Comment